Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Numerical interpretation of thermal desorption spectra of hydrogen from high-carbon ferrite-austenite dual-phase steel

Ebihara, Kenichi; Sekine, Daiki*; Sakiyama, Yuji*; Takahashi, Jun*; Takai, Kenichi*; Omura, Tomohiko*

International Journal of Hydrogen Energy, 48(79), p.30949 - 30962, 2023/09

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

To understand hydrogen embrittlement (HE), which is one of the stress corrosion cracking of steel materials, it is necessary to know the H distribution in steel, which can be effectively interpreted by numerical simulation of thermal desorption spectra. In weld metals and TRIP steels, residual austenite significantly influences the spectra, but a clear H distribution is not well known. In this study, an originally coded two-dimensional model was used to numerically simulate the previously reported spectra of high-carbon ferritic-austenitic duplex stainless steels, and it was found that H is mainly trapped at the carbide surface when the amount of H in the steel is low and at the duplex interface when the amount of H is high. It was also found that the thickness dependence of the H desorption peak for the interface trap site is caused by a different reason than the conventional one.

Journal Articles

Numerical interpretation of hydrogen thermal desorption spectra for iron with hydrogen-enhanced strain-induced vacancies

Ebihara, Kenichi; Sugiyama, Yuri*; Matsumoto, Ryosuke*; Takai, Kenichi*; Suzudo, Tomoaki

Metallurgical and Materials Transactions A, 52(1), p.257 - 269, 2021/01

 Times Cited Count:9 Percentile:50.55(Materials Science, Multidisciplinary)

We simulated the thermal desorption spectra of a small-size iron specimen to which was applied during charging with hydrogen atoms using a model incorporating the behavior of vacancies and vacancy clusters. The model considered up to vacancy clusters $$V_9$$, which is composed of nine vacancies and employed the parameters based on atomistic calculations, including the H trapping energy of vacancies and vacancy clusters that we estimated using the molecular static calculation. As a result, we revealed that the model could, on the whole, reproduced the experimental spectra except two characteristic differences, and also the dependence of the spectra on the aging temperature. By examining the cause of the differences, the possibilities that the diffusion of clusters of $$V_2$$ and $$V_3$$ is slower than the model and that vacancy clusters are generated by applying strain and H charging concurrently were indicated.

Journal Articles

Interpretation of thermal desorption spectra of hydrogen from aluminum using numerical simulation

Ebihara, Kenichi; Yamaguchi, Masatake; Tsuru, Tomohito; Itakura, Mitsuhiro

Keikinzoku, 68(11), p.596 - 602, 2018/11

Hydrogen embrittlement (HE) is considered as one cause of stress corrosion cracking. HE is a serious problem in the development of high strength aluminum alloy as with steels. For understanding HE, it is inevitable to know hydrogen trapping states in the alloys and it can be identified using thermal desorption spectrometry of H. In this study, we numerically simulated thermal desorption spectra of hydrogen in aluminum for a cylindrical and a plate specimens and interpreted the desorption peaks included in them on the basis of the trap site concentration and the trap energy. As a result, we found that the peak at the lowest-temperature side can result from grain boundaries and confirmed that the reported interpretation for other peaks is reasonable. We also obtained the result showing the possibility that the trap site concentration of defects changes during heating the specimens. This result may give a suggestion for the interpretation of temperature desorption spectra of steels.

Journal Articles

Chemical decontamination of the tritium-sorbing surface of type 316 stainless steel

Hirabayashi, Takakuni; Saeki, Masakatsu; Tachikawa, Enzo

Journal of Nuclear Materials, 136, p.179 - 185, 1985/00

 Times Cited Count:19 Percentile:87.99(Materials Science, Multidisciplinary)

no abstracts in English

Oral presentation

Numerical study on the hydrogen thermal desorption of an iron specimen including strain-induced vacancies

Ebihara, Kenichi; Sugiyama, Yuri*; Takai, Kenichi*; Matsumoto, Ryosuke*; Suzudo, Tomoaki

no journal, , 

no abstracts in English

Oral presentation

Numerical study on hydrogen thermal desorption spectra of high-carbon $$alpha$$-$$gamma$$ dual phase steel

Ebihara, Kenichi; Sekine, Daiki*; Sakiyama, Yuji*; Takahashi, Jun*; Takai, Kenichi*; Omura, Tomohiko*

no journal, , 

Hydrogen embrittlement (HE) in high-strength steels and advanced high-strength steels is a phenomenon that must be understood for its prediction and prevention. Since the austenite phase ($$gamma$$ phase) in these steels traps more H than the matrix phase, its effect on HE is of concern. In this study, we numerically reproduced the previously reported H thermal desorption spectra of a high-carbon $$alpha$$-$$gamma$$ duplex stainless steel specimen to clarify the H-trapping defects in the specimen. The results show that H is trapped at the carbide surface when the amount of H inside the sample is low, but that the amount of H trapped at the $$gamma$$ phase surface increases as the H content increases, and that H trapped inside the $$gamma$$ phase is desorbed at relatively low temperatures. It was also found that the H entry simulation may not yield an appropriate pre-temperature initial H distribution. The conference will address this point.

6 (Records 1-6 displayed on this page)
  • 1